The HRSR Series is designed to receive total liquid flow, reduce gas temperatures to desired levels, and lower exhaust noise reducing the need for a muffler. The modulating exhaust bypass assembly will allow the tempering of exit temperatures to achieve optimal heat recovery. The radial design allows finned tube access for cleaning and inspection. A single row of finned tubing with optional removable Swagelok™ compression fittings, provides maximum thermal efficiency and easy access for cleaning, inspection or replacement.

The HRSR is engineered for vertical or horizontal operation, combustion capacity up to 4000kW, and entering gas temperature up to 1,250°F to match the needs of your specific application.
The HRSR Series is designed to receive total liquid flow, reduce gas temperatures to desired levels, and lower exhaust noise reducing the need for a muffler. The modulating exhaust bypass assembly will allow the tempering of exit temperatures to achieve optimal heat recovery. The radial design allows finned tube access for cleaning and inspection. A single row of finned tubing with optional removable Swagelok™ compression fittings, provides maximum thermal efficiency and easy access for cleaning, inspection or replacement.

The HRSR is engineered for vertical or horizontal operation, combustion capacity up to 4000 kW, and entering gas temperature up to 1,250°F to match the needs of your specific application.
The HRSR Series is designed to receive total liquid flow, reduce gas temperatures to desired levels, and lower exhaust noise reducing the need for a muffler. The modulating exhaust bypass assembly will allow the tempering of exit temperatures to achieve optimal heat recovery. The radial design allows finned tube access for cleaning and inspection. A single row of finned tubing with optional removable Swagelok™ compression fittings, provides maximum thermal efficiency and easy access for cleaning, inspection or replacement.

The HRSR is engineered for vertical or horizontal operation, combustion capacity up to 4000kW, and entering gas temperature up to 1,250°F to match the needs of your specific application.

HRSR-436D28SSP
Northrop Grumman, Palmdale, California
Recovering Exhaust Heat from a natural gas engine generator; cooling 3,016 SCFM from 1,195°F to 401°F; and heating 253 GPM of water from 325°F to 350.1°F.
MICRO COGEN

The HRSR Series is designed to receive total liquid flow, reduce gas temperatures to desired levels, and lower exhaust noise reducing the need for a muffler. The modulating exhaust bypass assembly will allow the tempering of exit temperatures to achieve optimal heat recovery. The radial design allows finned tube access for cleaning and inspection. A single row of finned tubing with optional removable Swagelok™ compression fittings, provides maximum thermal efficiency and easy access for cleaning, inspection or replacement.

The HRSR is engineered for vertical or horizontal operation, combustion capacity up to 4000kW, and entering gas temperature up to 1,250°F to match the needs of your specific application.

HRSR-116826.5ALS (above)
Murrieta High School, Murrieta, California
Recovering Exhaust Heat from a natural gas 60kW micro turbine; cooling 856 SCFM from 580°F to 289°F; and heating 40 GPM of water from 75°F to 90.2°F.

HRSR-116826.5ALS (right)
Fontana High School, Fontana, California.
Recovering Exhaust Heat from a natural gas 60kW micro turbine; cooling 856 SCFM from 580°F to 289°F; and heating 40 GPM of swimming pool water from 75°F to 90.2°F.

Designed for outdoor use.

© 2005 Cain Industries, Inc.